skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herman, Luke A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Due to its transparent and conductive nature, indium tin oxide (ITO) offers substantial benefits in several industries, such as thin film transistors, displays, and nanophotonics. Previous studies on ultrathin ITO have so far focused on its electrical properties but have neglected the technologically important epsilon-near-zero (ENZ) optical features due to the difficulty of extracting the refractive index and the thickness-dependent degradation of the optical properties. Here, we demonstrate a complementary metal-oxide-semiconductor (CMOS)-compatible deposition procedure for sub-percolation thickness (below 4 nm) ITO using a dry-etch assisted radiofrequency magnetron sputtering technique that yields continuous films in a precisely controlled manner. Through interface engineering and post-deposition annealing optimization, we show that these ITO films can retain high carrier mobility (43 cm2V−1s−1) while achieving a tunable near-zero-index (NZI) regime throughout the telecommunications band using a Berreman-assisted optical characterization technique. Our result opens the possibility of efficiently designing ENZ/NZI materials at the nanoscale using a robust fabrication approach for applications in nanophotonics. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026